CONNECTED VEHICLE PILOT **Deployment Program** SESSION 3: EVALUATING PERFORMANCE AND LONG-TERM SUSTAINMENT ## SESSION AGENDA - Session Introduction - Kate Hartman, Chief, Research, Evaluation, & Management, ITS JPO, USDOT - CV Pilots Evaluation Overview - Meenakshy Vasudevan, Senior Principal, Noblis - Safety Evaluation Overview - Emily Nodine, Technical Project Manager, Volpe - Mobility, Environment, and Public Agency Efficiency Evaluation Overview - Mike Lukuc, Program Manager and Research Scientist, TTI - Financial and Institutional Evaluation Overview - Mike Lukuc, Program Manager and Research Scientist, TTI - Q&A at the end of each topic ## Session Introduction ### Session Objectives To present the goals, challenges, and approaches for an *independent* evaluation of CV Pilots ### Session Topics: - USDOT's vision for an independent evaluation of CV Pilots, and challenges and possible solutions - Safety evaluation approach, including the Safety Pilot evaluation experiences and the safety evaluation plan/concept for CV Pilots - Mobility, environmental and public agency efficiency evaluation plans - Institutional and sustainability evaluation goals # Meenakshy Vasudevan **Noblis** **CV Pilots Evaluation Overview** ### **CV PILOT SCHEDULE** #### Connected Vehicle Pilot Deployment (up to 50 months) - Phase 1: Concept Development (COMPLETE) - Creates the foundational plan to enable further design and deployment - Progress Gate: Is the concept ready for deployment? - Phase 2: Design/Build/Test (CURRENT PHASE- began September 1, 2016) - Design, build, and test to ensure deployment functions as intended (both technically and institutionally) - Progress Gate: Does the system function as planned? - Phase 3: Maintain/Operate - Operate and maintain system; Assess performance of the deployed system - Post Pilot Operations (CV tech integrated into operational practice) ### **CV PILOTS EVALUATION PURPOSE** - INFORM PROSPECTIVE DEPLOYERS of CV-enabled applications of: - potential safety, mobility, environmental, and public agency efficiency (SMEP) impacts and user satisfaction of deployments - potential deployment costs - practical institutional and financial models for long-term deployment - **INFORM USDOT** on effectiveness of the CV Pilots program in: - creating proven and transferable deployment concepts - demonstrating measureable short and long term SMEP impacts - overcoming deployment challenges - accelerating deployment of successful and sustainable CV applications ### **MULTI-TIERED EVALUATION** ### CV Pilot Site-Specific Evaluation - Conduct cost-benefit SMEP analyses - Assess acceptance/satisfaction of pilots - Assess efficacy of deployed institutional/financial models - Document lessons learned ### CV Pilot National-Level Evaluation Conduct national-level evaluation of CV Deployments ### CV Pilot Program Evaluation - Assess whether performance-management focus of pilot deployments was beneficial - Assess if the program achieved its vision cost-effectively #### Lack of Sufficient Data - Challenge - Observed changes in performance may not be statistically significant due to lack of sufficient data (e.g., quantity, detail): - low exposure (e.g., Wrong way entry warnings may be very rare) - aggregated data/gaps in data/obscured data due to privacy constraints - small sample of crash data - Possible Solutions - Collect additional data but, constrained by resources/schedule - Use surrogate measures to assess safety impacts - Supplement with simulation - Tailor evaluation approach #### Erroneous Data - Challenge - Performance measurement based on erroneous data can be misleading, and lead to lack of credibility and usefulness of estimated performance - Possible Solution - Allocate resources for data quality verification - Establish data quality standards - Check for quality using a combination of automated and manual procedures ### Unsubstantiated Validity of Alerts/Warnings - Challenge - Objective data to support validation of application accuracy are not available since collecting detailed research data is out of scope for operational field test - Possible Solutions - Verify accuracy of applications during operational readiness tests (predeployment) - Estimate accuracy of alerts/warnings using site-provided BSM and other supplementary data ### Confounding Factors - Challenges - Inability to control for confounding factors can lead to misleading conclusions - Possible Solutions - Use robust experimental designs - Randomized Experimental Design with control/treatment groups - Quasi-Experimental Design (if randomization is infeasible) - Use statistical techniques (e.g., cluster analysis, counterfactual modeling) or supplement with modeling and simulation ### Access to Site Participants - Challenge - Restricted access to site participants for conducting surveys/interviews - Possible Solution - Allocate resources to coordinate with sites' Institutional Review Boards (IRB) - Engage with sites' IRBs early in the process to approve release of necessary participant data ### Retention of Institutional Memory - Challenge - Retention of institutional memory as a result of possible staff turnover due to the long duration of the deployment; can lead to wasted resources and falling behind schedule - Possible Solution - Document procedures, processes, challenges, and resolutions frequently # COMPLEX PROBLEM REQUIRES DIVERSE TALENTS (DIVIDE AND CONQUER) # **Questions & Answers** # **Emily Nodine** Volpe **Safety Evaluation Overview** ## SAFETY EVALUATION OVERALL GOAL/APPROACH Leverage site generated data to conduct the most thorough evaluation possible: Connected Vehicle Data Other operational data (e.g., speed sensors) ## SAFETY EVALUATION GOALS Achieve a detailed understanding of the safety impact of the CV deployments at each pilot site: 1. Annual change in relevant crash rates Impact on surrogate safety measures ## SITE SPECIFIC GOALS/APPROACH # 1. Applications deployed vs. Crash types | Safety
Application | Rear-End
Crash | Lane-Change
Crash | Crossing-
Path Crash | Pedestrian-
Crossing
Crash | |-----------------------|-------------------|----------------------|-------------------------|----------------------------------| | FCW | X | | | | | LCW | | X | | | | RLVW | | | X | | | PED-X | | | | X | # SITE SPECIFIC GOALS/APPROACH (CONT.) # 2. Application type Vs. # 3. Vehicle types 4. Data availability # SITE SPECIFIC GOALS/APPROACH (CONT.) # 5. Target crash population ### **CONFLICT ANALYSES** Conflicts: High-risk, near-crash scenarios where drivers had to intervene to avoid a crash - □ Conflict Metrics: - Exposure - □ Response # **New York City Evaluation Overview** ### NYC EVALUATION DESIGN CONSIDERATIONS Experimental Design ## NYC EVALUATION DESIGN CONSIDERATIONS - Limited to triggered (not continuous) data collection - No vehicle identifiers Small sample size of target crash population ### **NYC OVERALL APPROACH** Step 1: Identify driving conflict events Step 2: Compare driver response to conflicts Step 3: Estimate crash reduction effectiveness using Monte Carlo Simulation Step 4: Evaluate driving performance for "cautionary" safety applications (EEBL, BSW, RLVW, Speed Compliance) # TAMPA FLORIDA EVALUATION OVERVIEW ### TAMPA EVALUATION DESIGN CONSIDERATIONS - Experimental Design - Before/After - CAN data (objective vehicle input data) are not being collected # TAMPA EVALUATION DESIGN CONSIDERATIONS Potential for low exposure for certain applications E.g., Wrong-Way Entry Warning Extremely small sample size of target crash population ### TAMPA OVERALL APPROACH **Step 1: Identify driving conflict events** **Step 2: Compare change in exposure to conflicts** Step 3: Compare change in response to conflicts Step 4: Estimate crash reduction effectiveness using Monte Carlo Simulation **Step 5: Evaluate driving performance** - e.g. Speed approaching REL, frequency of wrong way entries # WYOMING EVALUATION OVERVIEW ### WYOMING EVALUATION DESIGN CONSIDERATIONS - Experimental Design - -Before/After - –With/Without (unequipped vehicles) Without Without With ### WYOMING EVALUATION DESIGN CONSIDERATIONS - Most applications are cautionary (all but FCW) - Conflict analysis will not be conducted - Isolating incremental improvements above existing sophisticated TMC system VS. ### WYOMING OVERALL APPROACH - 1. Assess changes in driving speed - Work zones - Weather - 2. Assess changes in crash rates - Total crash rates - # of vehicles in a crash - 3. Characterize driver response to warnings #### WANT TO KNOW MORE? Emily.Nodine@dot.gov Walter.During@dot.gov ## **Questions & Answers** ### Mike Lukuc Texas A&M Transportation Institute Mobility, Environmental and Public Agency Efficiency (MEP) Evaluation of the CV Pilot Deployments #### TTI EVALUATION TEAM Excellence Delivered As Promised #### **MEP EVALUATION - OVERALL OBJECTIVES** Conduct a comprehensive evaluation of each of the NYC, THEA and WY CV Pilot Deployments in order to: - Assess the MEP impacts - Perform a SMEP cost-benefit analysis for each site, incorporating Volpe's site-specific safety evaluation results - Evaluate user perceptions/satisfaction of the SMEP impacts generated by the CV Pilot Deployments - Document lessons learned Tampa (THEA) WYDOT ## MEP EVALUATION CURRENT PLANNING PHASE ACTIVITIES ### **EVALUATION CONCEPT DEVELOPMENT PROCESS** ### **USDOT** AND **IE** EVALUATION GOALS | US DOT | MEP Evaluation Goals – with respect to deployment of CV technology | |------------------------|---| | Improve
Safety | Assess the safety impacts of deploying CV technologies Determine the impact, or unintended consequences, of V2X safety applications on overall traffic safety and operations | | Improve
Mobility | Quantify the impact of the CV technologies mobility in the deployment corridors at each deployment site Quantify the impact of the CV technologies on user travel reliability at each deployment site Quantify the impact of CV technologies on user mobility at each deployment site | | Improve
Environment | 6. Quantify the environmental service benefits related to improvements in mobility and safety from CV technologies at each deployment site | ### **USDOT** AND IE EVALUATION GOALS (CONTINUED) | US DOT
Goals | MEP Evaluation Goals – with respect to deployment of CV technology | |--|---| | Improve
Public Agency
Efficiency | 7. Quantify the impact of each deployment impacted on public agency efficiencies in addressing the traveling public's needs | | Positive
Benefit/Cost | 8. Assess the societal benefits and costs associated with each deployment | | Positive Stakeholder Experience & Knowledge Transfer | Assess the user satisfaction associated with each deployment Document the lessons learned and stakeholder acceptance of each deployment Document the impact of confounding factors on the benefits of each deployment | #### **MEP EVALUATION – OVERALL APPROACH** - Perform Observation-based Analyses where Possible - Leverage data generated by the sites - Collect additional data if needed - Complement with Simulation-based Analyses - Quantify system-wide impacts of the deployment - Address questions that data collected by sites cannot answer - Incorporate Volpe's impact analysis results to model the safety impact of deployed applications on traffic operations - Control confounding factors through simulation and demand modeling - Conduct User Surveys to gather feedback on MEP impacts - Leverage CV Pilot Performance Evaluation Platform for data storage and analytics Department of Transportation #### MOBILITY IMPACTS ANALYSIS APPROACH - Observation-based Analysis - Rely on data collected from sites - May collect additional data to fill information gaps - Simulation-based Analysis - Calibrated with field data for CVs and Non-CVs - Monitor vehicle throughput changes for various simulation scenarios to estimate impacts of different CV market penetration - Models will provide estimates of performance measures - Travel time reliability will be estimated by weighting scenario outputs by probability #### SAFETY IMPACTS ANALYSIS APPROACH - Use simulation modeling to test impacts of different crash scenarios on traffic operations and weight the results according to changes in frequency. - Rely on Volpe safety impacts assessment particularly estimates in reduction in crashes - Utilize a year of crash data in cluster analysis to identify modeling scenarios. - Critical for monitoring economic benefits of technologies #### ENVIRONMENTAL IMPACTS ANALYSIS APPROACH - Emissions and Fuel Consumption Modeling - Will integrate MOVES emissions model with traffic simulation model using a probevehicle approach (second-by-second vehicle trajectories) - Compare with and without CV technologies - Assess changes in mobility, which affect fuel consumption and emissions - Eco-Services Data Analysis - Wildlife to vehicle collisions - Wyoming only - Data sources - Reported collisions in which police or tow truck operators are involved, - Database of carcasses cleaned up by Wyoming DOT #### PUBLIC AGENCY EFFICIENCY ANALYSIS APPROACH - Observation-based analysis - Analyze agencies operations logs - Simulation-based analysis - Estimate transit ridership impacts using travel time ridership elasticities - Unable to predict incident detection times, driver perceptions, agency perceptions, and benefit cost ratios - Administer stakeholder surveys/interviews - Gather feedback on improvements or changes to decision making, etc. - Assess changes in detection, notification, and responses to traffic events and situations occurring on the network. #### USER SATISFACTION ANALYSIS APPROACH - Develop baseline and post-deployment survey instruments with Volpe - Coordinate with site teams to administer baseline and post-deployment surveys - Analyze survey data to: - Understand and describe user samples. - Perform subgroup analysis e.g., to be able to compare CV attitudes and experiences across key subgroups - Assess the impacts of CV systems #### <u>Site-specific differences</u> in user groups: - New York: Taxi, UPS operators, Sanitation Truck drivers, and Bus drivers - Tampa: Bus and Streetcar Drivers and Pedestrians - Wyoming: Snowplow drivers, Highway Patrol, Commercial Truck drivers #### STAKEHOLDER ACCEPTANCE ANALYSIS APPROACH #### Qualitative interviews - <u>Pre-deployment</u> to elicit vision, goals, expectations immediately subsequent to the planning/design stage - <u>Near-term post-deployment</u> to gather information about deployment experiences, outcomes, and satisfaction shortly after activation - Long-term post-deployment to capture information about deployment experiences, outcomes, and satisfaction towards the end of the deployment #### Online survey <u>Post-deploymen</u>t to gather feedback on how well the pilots fulfilled the goals and objectives of entities less involved in day-to-day pilot planning and execution. #### Workshop Post-deployment (after post-deployment interviews) to foster cross-stakeholder dialogue about challenges, solutions, lesions learned as well as clarify and confirm key findings ### DATA COLLECTION BY STAKEHOLDER | Stakeholder
Type | Pre-Deployment
Interviews | Post-Deployment Interviews | | Survey | Workshop | |------------------------|------------------------------|----------------------------|-----------|--------|----------| | | | Near-Term | Long-Term | | | | Deployment
Managers | х | х | х | | х | | Deployment
Team | х | х | | | х | | Operating Agencies | х | | х | | х | | Fleet Operators | | | | х | | | Supporting Agencies | | | | х | | | Policy Makers | Х | | х | | | #### BENEFIT/COSTS ANALYSIS - APPROACH - Spans the <u>timeframe</u> from planning to 10 years post deployment - Estimates the <u>benefits and costs</u> for both the actual and higher CV penetration rates - Considers *costs*, such as: - To plan, implement, operate and maintain the CV deployment projects. - Marginal costs incurred by agencies (or users) due to the project - Monetizes benefits related to: - Mobility - Safety - Emissions - Fuel consumption - Vehicle operations #### MEP EVALUATION CHALLENGES - Data availability and obfuscation - Deployment vs. research project - Low market penetration rate in deployment zones - Mobility benefit dependency upon safety benefits - NYC and Tampa deployments are predominantly safety related - Mobility benefits assessed through modeling - Impact of confounding factors - Weather - Variations in demand - Work zones and maintenance - Special Events and manual intersection control - Traffic accidents and emergency response - WY evaluation has unique challenges - Weather and Incident response #### **QUESTIONS** TTI IE PM: Mike Lukuc M-Lukuc@tti.tamu.edu TTI IE PI/TM: Kevin Balke K-Balke@tti.tamu.edu <u>USDOT Evaluation COR:</u> Walter During <u>Walter.During@dot.gov</u> <u>USDOT CV Pilot PM:</u> Kate Hartman <u>Kate.Hartman@dot.gov</u> ### Mike Lukuc Texas A&M Transportation Institute User and Stakeholder Acceptance/Satisfaction, Financial and Institutional Assessment of CV Pilot Deployment #### TTI EVALUATION TEAM Excellence Delivered As Promised ## FINANCIAL AND INSTITUTIONAL EVALUATION - OBJECTIVES #### For each of the NYC, Tampa and WY CV Pilot Deployments: - Assess <u>user and stakeholder acceptance/satisfaction</u> associated with the financial and institutional elements of each CV Pilot deployment site - Assess the <u>change in the financial and institutional</u> setting, frameworks, models, and elements, as well as the associated impacts - Evaluate the likelihood of achieving <u>financial sustainability</u> # FINANCIAL AND INSTITUTIONAL EVALUATION - PRIMARY ACTIVITIES #### For each of the three CV Pilot Deployments: - Develop a financial evaluation plan - Develop an institutional evaluation plan - Develop/refine user acceptance and stakeholder evaluation survey instruments - Develop/refine a stakeholder acceptance/satisfaction evaluation plan and survey instrument guides - Assess user and stakeholder acceptance/satisfaction, and financial and institutional impacts ## DEVELOP FINANCIAL EVALUATION PLANGOALS - Assess the changes in the financial settings, frameworks, models, elements and associated impacts from the planned and implemented CV deployments - Relative to the baseline - Three time periods - Short-term → 1 to 2 years - Mid-term → 3 to 5 years - Long-Term → 7 to 10 years # DEVELOP FINANCIAL EVALUATION PLAN – GOALS (CONT.) - Develop discounted cash flow (DCF) model to assess financial sustainability - Comprehensive checklist of potential financial factors - Determine data needs - Collect baseline data - Conduct assessment of financial risks - Develop methodology for conducting periodic updates - Survey users/stakeholders - Willingness to pay - Price break points - Potential subscription options - Conduct periodic assessments (Source: The bull com au) ## DEVELOP INSTITUTIONAL EVALUATION PLAN — GOALS - Develop an Institutional Evaluation Plan to assess the effects of changes in institutions at each site due to CV deployments - Leverage USDOT Guidance for Connected Vehicle Deployments to identify and evaluate institutional integration issues - Supplement with local experience and knowledge - Develop a risk assessment matrix - Issues to be examined include: - Governance - Public/Private Partnerships - Organizational structure - Legislation - Use of industrial organization ## DEVELOP INSTITUTIONAL EVALUATION PLAN – APPROACH - Identify potential institutional factors to be examined - Map institutional factors to sites - Determine baseline conditions - Develop methodology for assessing/estimating impacts - Identify information and data needs to be collected at each site - Integrate in the Stakeholder Acceptance Interviews/Survey assessment ## DEVELOP USER ACCEPTANCE/ SATISFACTION SURVEY INSTRUMENTS - GOALS - Develop/refine site-specific user acceptance/satisfaction survey instruments - Assess user perceptions and satisfaction with the changes in the financial and institutional settings, frameworks, models, and elements - Refine both baseline and post-deployment user survey instruments to ensure that alignment with these evaluation plans # DEVELOP STAKEHOLDER ACCEPTANCE EVALUATION PLAN AND SURVEY/INTERVIEW GUIDES - Stakeholder Acceptance Evaluation Plan and Survey/Interview Guides currently under development - Purpose of this activity is to integrate data needs for financial and institutional plans into stakeholder acceptance data collection ### STAKEHOLDER ASSESSMENT TOOLS | Stakeholder Type | Pre-
Deployment | | | Survey | Workshop | |----------------------------|--------------------|-----------|-----------|--------|----------| | | Interviews | Near-Term | Long-Term | | | | Deployment
Managers | Х | Х | Х | | Х | | Deployment Team | Х | X | | | X | | Operating Agencies | Х | | X | | X | | Fleet Operators | | | | X | | | Supporting Agencies | | | | X | | | Policymakers | X | | X | | | ## ASSESS USER AND STAKEHOLDER ACCEPTANCE/SATISFACTION AND FINANCIAL AND INSTITUTIONAL IMPACTS ### Goals: - Execute the financial and institutional evaluation plans - Analyze user acceptance/satisfaction survey responses provided by the deployment sites - Administer the stakeholder surveys/interviews and analyze responses #### Outcome: Financial and Institutional Assessments #### USER AND STAKEHOLDER ASSESSMENT #### Purpose: - Analyze results of User Satisfaction Survey data collected by sites - Collect and analyze Stakeholder Acceptance Data - User Satisfaction Survey - Extract data from CV Performance Evaluation Platform - Aggregate and analyze survey responses - Execution of surveys responsibility of sites - Stakeholder Acceptance - Execute Stakeholder Acceptance Evaluation Plan - Interviews/On-line Survey/Workshop - Documents results #### FINANCIAL AND INSTITUTIONAL ASSESSMENT ### Purpose: - Assess extent financial and institutional arrangement can sustain deployment - Capture and document: - Financial and institutional challenges and solutions - Financial and institutional lessons learned #### FINANCIAL AND INSTITUTIONAL ASSESSMENT #### Semi-annual site assessments - Assess progress achieving sustainability and performance goals - Identify and analyze any financial and institutional challenges and solution encountered - Gauge the likelihood of achieving financial sustainability - Conduct preliminary analysis of user survey responses - Conduct preliminary analysis of stakeholder survey responses #### **QUESTIONS/COMMENTS** TTI PM: Mike Lukuc M-Lukuc@tti.tamu.edu TTI PI/TM: Kevin Balke K-Balke@tti.tamu.edu TTI Co-PI: Johanna Zmud J-Zmud@tti.tamu.edu <u>USDOT Task Order COR</u>; Angela Jacobs Angela.Jacobs@dot.gov **USDOT Evaluation COR:** Walter During Walter.During@dot.gov **USDOT CV Pilot PM:** Kate Hartman Kate.Hartman@dot.gov #### STAY CONNECTED #### Visit USDOT Exhibition Booth USDOT Booth #1301 Talk to the Pilot Site Representatives October 31, 2017 WYDOT : 2:00 PM - 3:00 PM Tampa (THEA): 3:00 PM - 4:00 PM NYCDOT : 4:00 PM - 5:00 PM November 1, 2017 NYCDOT : 9:00 AM - 10:00 AM Tampa (THEA): 10:00 AM - 11:00 AM WYDOT : 11:00 AM - 12:00 PM #### **Contact for CV Pilots Program/Site AORs:** Kate Hartman, Program Manager, Wyoming DOT Site AOR; Kate.hartman@dot.gov Jonathan Walker, NYCDOT Site AOR <u>Jonathan.b.Walker@dot.gov</u> Govind Vadakpat, THEA Site AOR G.Vadakpat@dot.gov ### Visit CV Pilot and Pilot Site Websites for more Information: CV Pilots Program: http://www.its.dot.gov/pilots NYCDOT Pilot: https://www.cvp.nyc/ Tampa (THEA): https://www.tampacvpilot.com/ Wyoming DOT: https://wydotcvp.wyoroad.info/